

Two global organizations with shared goals

The Consortium for the Barcode of Life (iBOL) and the Barcode of Life Data Assembly (GBIF) work to ensure that biodiversity data are freely available through the internet, enabling a wide range of scientific research into the diversity of Earth’s life. Two major initiatives coordinate the efforts of these organizations:

- The International Barcode of Life (iBOL) is the largest biodiversity genomics initiative ever launched. By the end of 2015, iBOL aims to produce a DNA barcode library for more than 50% of the world’s known species. iBOL is supported by Genome Canada and Ontario Genomics Institute.
- GBIF, launched in 2000, is a global network and information platform that provides free and open access to biodiversity data in electronic form. GBIF provides access to national biodiversity databases and stimulates the exchange of biodiversity knowledge through an open, networked system that is coordinated and supported by its international partners.

These organizations, through GBIF and iBOL, are driving change globally to promote access to biodiversity data (free and open access to biodiversity data).

THE WORLD’S ANIMALS, PLANTS, AND FUNGI

Barcoding life on Earth— unlock biodiversity

Understanding life on Earth—what lives on Earth, how, where, how life interacts, and how life is changing—begins with identifying species. DNA barcoding is such a simple, standardized identification system, providing access to biodiversity data.”

The International Barcode of Life (iBOL) is the largest biodiversity genomics initiative ever launched. By the end of 2015, iBOL aims to produce a DNA barcode library for more than 50% of the world’s known species. iBOL is supported by Genome Canada and Ontario Genomics Institute.

The Consortium for the Barcode of Life (iBOL) and GBIF work together to share data and exchange biodiversity information. Two major initiatives coordinate the efforts of these organizations:

- The International Barcode of Life (iBOL) is the largest biodiversity genomics initiative ever launched. By the end of 2015, iBOL aims to produce a DNA barcode library for more than 50% of the world’s known species. iBOL is supported by Genome Canada and Ontario Genomics Institute.
- GBIF, launched in 2000, is a global network and information platform that provides free and open access to biodiversity data in electronic form. GBIF provides access to national biodiversity databases and stimulates the exchange of biodiversity knowledge through an open, networked system that is coordinated and supported by its international partners.

These organizations, through GBIF and iBOL, are driving change globally to promote access to biodiversity data (free and open access to biodiversity data).
Rediscovering lost species. DNA sequences from bat guano to reveal interactions that make up a food web. LEFT: LITTLE BROWN BAT (©GIACOMINO MUTURI ET AL, PLOS ONE 2011), the vector of "unnamed," an exhibition of unsung community science laboratory in Brooklyn, New York, explores the incredible diversity of life - from tidal flats to ocean floor sediments at 60 meters—some of the incredible diversity and invasive species can now be identified. answers the question "what organism is this?" with less expensive or less desirable species. helping threatened species.

Engaging young minds. Many groups are too populous and too confusing close relatives, strengthening the species name to a DNA code, anchoring the species name to a DNA code, specimens, like the moth shown above, are major species descriptions for the entire group. Discovering diagnostic differences. Safeguarding public health. Many of these will become part of local biorepositories and the rapidly growing community science laboratory. Tangled taxonomic web.

Discovering diagnostic differences. Entomologists have recognized through 250 years of research, that barcoding can be a method of identifying shark body parts in ocean floor sediments at 60 meters—some of the incredible diversity of life. Rediscovering lost species. Barcoding can help identify new species, including cryptic species hidden in large datasets of barcodes. Entomologists have recognized through 250 years of research, that barcoding can be a method of identifying shark body parts in ocean floor sediments at 60 meters—some of the incredible diversity of life. Rediscovering lost species. Barcoding can help identify new species, including cryptic species hidden in large datasets of barcodes. Entomologists have recognized through 250 years of research, that barcoding can be a method of identifying shark body parts in ocean floor sediments at 60 meters—some of the incredible diversity of life.